Papers
Topics
Authors
Recent
2000 character limit reached

Decomposed Adversarial Learned Inference

Published 21 Apr 2020 in cs.LG and stat.ML | (2004.10267v1)

Abstract: Effective inference for a generative adversarial model remains an important and challenging problem. We propose a novel approach, Decomposed Adversarial Learned Inference (DALI), which explicitly matches prior and conditional distributions in both data and code spaces, and puts a direct constraint on the dependency structure of the generative model. We derive an equivalent form of the prior and conditional matching objective that can be optimized efficiently without any parametric assumption on the data. We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets by conducting quantitative and qualitative evaluations. Results demonstrate that DALI significantly improves both reconstruction and generation as compared to other adversarial inference models.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.