Papers
Topics
Authors
Recent
2000 character limit reached

An end-to-end CNN framework for polarimetric vision tasks based on polarization-parameter-constructing network (2004.08740v1)

Published 19 Apr 2020 in cs.CV

Abstract: Pixel-wise operations between polarimetric images are important for processing polarization information. For the lack of such operations, the polarization information cannot be fully utilized in convolutional neural network(CNN). In this paper, a novel end-to-end CNN framework for polarization vision tasks is proposed, which enables the networks to take full advantage of polarimetric images. The framework consists of two sub-networks: a polarization-parameter-constructing network (PPCN) and a task network. PPCN implements pixel-wise operations between images in the CNN form with 1x1 convolution kernels. It takes raw polarimetric images as input, and outputs polarization-parametric images to task network so as to complete a vison task. By training together, the PPCN can learn to provide the most suitable polarization-parametric images for the task network and the dataset. Taking faster R-CNN as task network, the experimental results show that compared with existing methods, the proposed framework achieves much higher mean-average-precision (mAP) in object detection task

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.