Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hiring Fairly in the Age of Algorithms (2004.07132v1)

Published 15 Apr 2020 in cs.HC and cs.CY

Abstract: Widespread developments in automation have reduced the need for human input. However, despite the increased power of machine learning, in many contexts these programs make decisions that are problematic. Biases within data and opaque models have amplified human prejudices, giving rise to such tools as Amazon's (now defunct) experimental hiring algorithm, which was found to consistently downgrade resumes when the word "women's" was added before an activity. This article critically surveys the existing legal and technological landscape surrounding algorithmic hiring. We argue that the negative impact of hiring algorithms can be mitigated by greater transparency from the employers to the public, which would enable civil advocate groups to hold employers accountable, as well as allow the U.S. Department of Justice to litigate. Our main contribution is a framework for automated hiring transparency, algorithmic transparency reports, which employers using automated hiring software would be required to publish by law. We also explain how existing regulations in employment and trade secret law can be extended by the Equal Employment Opportunity Commission and Congress to accommodate these reports.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Max Langenkamp (3 papers)
  2. Allan Costa (3 papers)
  3. Chris Cheung (1 paper)
Citations (19)