Papers
Topics
Authors
Recent
2000 character limit reached

Pseudospectrum and black hole quasi-normal mode (in)stability

Published 14 Apr 2020 in gr-qc, hep-th, math-ph, and math.MP | (2004.06434v4)

Abstract: We study the stability of quasinormal modes (QNM) in asymptotically flat black hole spacetimes by means of a pseudospectrum analysis. The construction of the Schwarzschild QNM pseudospectrum reveals the following: (i) the stability of the slowest-decaying QNM under perturbations respecting the asymptotic structure, reassessing the instability of the fundamental QNM discussed by Nollert [H. P. Nollert, About the Significance of Quasinormal Modes of Black Holes, Phys. Rev. D 53, 4397 (1996)] as an "infrared" effect; (ii) the instability of all overtones under small-scale ("ultraviolet") perturbations of sufficiently high frequency, which migrate towards universal QNM branches along pseudospectra boundaries, shedding light on Nollert's pioneer work and Nollert and Price's analysis [H. P. Nollert and R. H. Price, Quantifying Excitations of Quasinormal Mode Systems, J. Math. Phys. (N.Y.) 40, 980 (1999)]. Methodologically, a compactified hyperboloidal approach to QNMs is adopted to cast QNMs in terms of the spectral problem of a non-self-adjoint operator. In this setting, spectral (in)stability is naturally addressed through the pseudospectrum notion that we construct numerically via Chebyshev spectral methods and foster in gravitational physics. After illustrating the approach with the P\"oschl-Teller potential, we address the Schwarzschild black hole case, where QNM (in)stabilities are physically relevant in the context of black hole spectroscopy in gravitational-wave physics and, conceivably, as probes into fundamental high-frequency spacetime fluctuations at the Planck scale.

Citations (99)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.