Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Structural aspects of the anti-de Sitter black hole pseudospectrum (2312.11998v2)

Published 19 Dec 2023 in gr-qc

Abstract: Black holes in anti-de Sitter spacetime provide an important testing ground for both gravitational and field-theoretic phenomena. In particular, the study of perturbations can be useful to further our understanding regarding certain physical processes, such as superradiance, or the dynamics of strongly coupled conformal field theories through the holographic principle. In this work we continue our systematic study of the ultraviolet instabilities of black-hole quasinormal modes, built on the characterization of the latter as eigenvalues of a (spectrally unstable) non-selfadjoint operator and using the pseudospectrum as a main analysis tool, extending our previous studies in the asymptotically flat setting to Anti-de Sitter asymptotics. Very importantly, this step provides a singularly well-suited probe into some of the key structural aspects of the pseudospectrum. This is a consequence of the specific features of the Schwarzschild-anti-de Sitter geometry, together with the existence of a sound characterization by Warnick of quasinormal modes as eigenvalues, that is still absent in asymptotic flatness. This work focuses on such structural aspects, with an emphasis on the convergence issues of the pseudospectrum and, in particular, the comparison between the hyperboloidal and null slicing cases. As a physical by-product of this structural analysis we assess, in particular, the spectral stability of purely imaginary ``hydrodynamic" modes, which appear for axial gravitational perturbations, that become dominant when the black-hole horizon is larger than the anti-de Sitter radius. We find that their spectral stability, under perturbations, depends on how close they are to the real axis, or conversely how distant they are from the first oscillatory overtone.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (62)
  1. K. D. Kokkotas and B. G. Schmidt, Quasinormal modes of stars and black holes, Living Rev. Rel. 2, 2 (1999), arXiv:gr-qc/9909058 .
  2. H.-P. Nollert, Topical Review: Quasinormal modes: the characteristic ‘sound’ of black holes and neutron stars, Class. Quant. Grav. 16, R159 (1999).
  3. E. Berti, V. Cardoso, and A. O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26, 163001 (2009), arXiv:0905.2975 [gr-qc] .
  4. R. A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to string theory, Rev. Mod. Phys. 83, 793 (2011), arXiv:1102.4014 [gr-qc] .
  5. M. Zworski, Mathematical study of scattering resonances, Bulletin of Mathematical Sciences 7, 1 (2017).
  6. R. Brito, V. Cardoso, and P. Pani, Superradiance: New Frontiers in Black Hole Physics, Lect. Notes Phys. 906, pp.1 (2015), arXiv:1501.06570 [gr-qc] .
  7. K. Destounis, Superradiant instability of charged scalar fields in higher-dimensional Reissner-Nordström-de Sitter black holes, Phys. Rev. D 100, 044054 (2019a), arXiv:1908.06117 [gr-qc] .
  8. G. Mascher, K. Destounis, and K. D. Kokkotas, Charged black holes in de Sitter space: Superradiant amplification of charged scalar waves and resonant hyperradiation, Phys. Rev. D 105, 084052 (2022), arXiv:2204.05335 [gr-qc] .
  9. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2, 231 (1998), arXiv:hep-th/9711200 .
  10. V. E. Hubeny, The AdS/CFT Correspondence, Class. Quant. Grav. 32, 124010 (2015), arXiv:1501.00007 [gr-qc] .
  11. E. Barausse, V. Cardoso, and P. Pani, Can environmental effects spoil precision gravitational-wave astrophysics?, Phys. Rev. D 89, 104059 (2014), arXiv:1404.7149 [gr-qc] .
  12. A. Courty, K. Destounis, and P. Pani, Spectral instability of quasinormal modes and strong cosmic censorship, Phys. Rev. D 108, 104027 (2023), arXiv:2307.11155 [gr-qc] .
  13. H.-P. Nollert, About the significance of quasinormal modes of black holes, Phys. Rev. D 53, 4397 (1996), arXiv:gr-qc/9602032 .
  14. J. M. Aguirregabiria and C. V. Vishveshwara, Scattering by black holes: A Simulated potential approach, Phys. Lett. A 210, 251 (1996).
  15. C. V. Vishveshwara, On the black hole trail …: A personal journey, in 18th Conference of the Indian Association for General Relativity and Gravitation (1996) pp. 11–22.
  16. H.-P. Nollert and R. H. Price, Quantifying excitations of quasinormal mode systems, J. Math. Phys. 40, 980 (1999), arXiv:gr-qc/9810074 .
  17. R. G. Daghigh, M. D. Green, and J. C. Morey, Significance of Black Hole Quasinormal Modes: A Closer Look, Phys. Rev. D 101, 104009 (2020), arXiv:2002.07251 [gr-qc] .
  18. L. Al Sheikh, Scattering resonances and Pseudospectrum : stability and completeness aspects in optical and gravitational systems, Theses, Université Bourgogne Franche-Comté (2022).
  19. J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Pseudospectrum and Black Hole Quasinormal Mode Instability, Phys. Rev. X 11, 031003 (2021), arXiv:2004.06434 [gr-qc] .
  20. J. L. Jaramillo, R. Panosso Macedo, and L. Al Sheikh, Gravitational Wave Signatures of Black Hole Quasinormal Mode Instability, Phys. Rev. Lett. 128, 211102 (2022), arXiv:2105.03451 [gr-qc] .
  21. E. Gasperin and J. L. Jaramillo, Energy scales and black hole pseudospectra: the structural role of the scalar product, Class. Quant. Grav. 39, 115010 (2022), arXiv:2107.12865 [gr-qc] .
  22. T. A. Driscoll and L. N. Trefethen, Pseudospectra for the wave equation with an absorbing boundary, Journal of Computational and Applied Mathematics 69, 125 (1996).
  23. L. Trefethen and M. Embree, Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators (2005).
  24. E. B. Davies, Pseudospectra of differential operators, J. Oper. Th 43, 243 (2000).
  25. E. Davies, Linear Operators and their Spectra, Cambridge Studies in Advanced Mathematics (Cambridge University Press, 2007).
  26. J. Sjöstrand, Non-Self-Adjoint Differential Operators, Spectral Asymptotics and Random Perturbations, Pseudo-Differential Operators (Springer International Publishing, 2019).
  27. M. Zworski, Distribution of poles for scattering on the real line, Journal of Functional Analysis 73, 277 (1987).
  28. M. V. Berry, Semiclassically weak reflections above analytic and non-analytic potential barriers, Journal of Physics A: Mathematical and General 15, 3693 (1982).
  29. D. Bindel and M. Zworski, Theory and computation of resonances in 1d scattering.
  30. S. Sarkar, M. Rahman, and S. Chakraborty, Perturbing the perturbed: Stability of quasinormal modes in presence of a positive cosmological constant, Phys. Rev. D 108, 104002 (2023), arXiv:2304.06829 [gr-qc] .
  31. D. Areán, D. G. Fariña, and K. Landsteiner, Pseudospectra of Holographic Quasinormal Modes,   (2023), arXiv:2307.08751 [hep-th] .
  32. B. Cownden, C. Pantelidou, and M. Zilhão, The pseudospectra of black holes in AdS,   (2023), arXiv:2312.08352 [gr-qc] .
  33. J. L. Jaramillo, Pseudospectrum and binary black hole merger transients, Class. Quant. Grav. 39, 217002 (2022), arXiv:2206.08025 [gr-qc] .
  34. R. Konoplya and A. Zhidenko, First few overtones probe the event horizon geometry,(2022), arXiv preprint arXiv:2209.00679 .
  35. T. Torres, From Black Hole Spectral Instability to Stable Observables, Phys. Rev. Lett. 131, 111401 (2023), arXiv:2304.10252 [gr-qc] .
  36. K. Destounis and F. Duque, Black-hole spectroscopy: quasinormal modes, ringdown stability and the pseudospectrum (2023) arXiv:2308.16227 [gr-qc] .
  37. J. Besson, V. Boyanov, and J. L. Jaramillo, Black hole quasi-normal modes as eigenvalues: definition and stability problem, in preparation.
  38. C. M. Warnick, On quasinormal modes of asymptotically anti-de Sitter black holes, Commun. Math. Phys. 333, 959 (2015), arXiv:1306.5760 [gr-qc] .
  39. A. Jansen, Overdamped modes in Schwarzschild-de Sitter and a Mathematica package for the numerical computation of quasinormal modes, Eur. Phys. J. Plus 132, 546 (2017), arXiv:1709.09178 [gr-qc] .
  40. K. Destounis, Charged Fermions and Strong Cosmic Censorship, Phys. Lett. B 795, 211 (2019b), arXiv:1811.10629 [gr-qc] .
  41. P. M. Chesler and L. G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de sitter spacetimes, Journal of High Energy Physics 2014, 1 (2014).
  42. H. Friedrich, On the ads stability problem, Classical and Quantum Gravity 31, 105001 (2014).
  43. G. Holzegel and C. M. Warnick, The einstein–klein–gordon–ads system for general boundary conditions, Journal of Hyperbolic Differential Equations 12, 293 (2015).
  44. P. Bizoń, T. Chmaj, and P. Mach, A toy model of hyperboloidal approach to quasinormal modes, arXiv:2002.01770  (2020), arXiv:2002.01770 [gr-qc] .
  45. K. Destounis, R. D. B. Fontana, and F. C. Mena, Accelerating black holes: quasinormal modes and late-time tails, Phys. Rev. D 102, 044005 (2020a), arXiv:2005.03028 [gr-qc] .
  46. K. Destounis, R. D. B. Fontana, and F. C. Mena, Stability of the Cauchy horizon in accelerating black-hole spacetimes, Phys. Rev. D 102, 104037 (2020b), arXiv:2006.01152 [gr-qc] .
  47. M. Natsuume, String theory implications on causal hydrodynamics, Prog. Theor. Phys. Suppl. 174, 286 (2008), arXiv:0807.1394 [nucl-th] .
  48. O. Saremi and D. T. Son, Hall viscosity from gauge/gravity duality, JHEP 04, 091, arXiv:1103.4851 [hep-th] .
  49. P. K. Kovtun and A. O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72, 086009 (2005), arXiv:hep-th/0506184 .
  50. A. Zenginoglu, A Geometric framework for black hole perturbations, Phys. Rev. D83, 127502 (2011), arXiv:1102.2451 [gr-qc] .
  51. M. Ansorg and R. Panosso Macedo, Spectral decomposition of black-hole perturbations on hyperboloidal slices, Phys. Rev. D 93, 124016 (2016), arXiv:1604.02261 [gr-qc] .
  52. R. Panosso Macedo, J. L. Jaramillo, and M. Ansorg, Hyperboloidal slicing approach to quasi-normal mode expansions: the Reissner-Nordström case, Phys. Rev. D 98, 124005 (2018), arXiv:1809.02837 [gr-qc] .
  53. A. Vasy, Microlocal analysis of asymptotically hyperbolic and kerr-de sitter spaces (with an appendix by semyon dyatlov), Inventiones mathematicae 194, 381 (2013).
  54. E. Leaver, An analytic representation for the quasi-normal modes of Kerr black holes, Proc. R. Soc. London, Ser. A 402, 285 (1985).
  55. O. Gannot, Quasinormal modes for schwarzschild–ads black holes: exponential convergence to the real axis, Communications in Mathematical Physics 330, 771 (2014).
  56. F. Ficek and C. Warnick, Quasinormal modes of reissner-nordstr\\\backslash\”{{\{{o}}\}} m-ads: the approach to extremality, arXiv preprint arXiv:2308.16035  (2023).
  57. D. Gajic and C. Warnick, Quasinormal Modes in Extremal Reissner–Nordström Spacetimes, Commun. Math. Phys. 385, 1395 (2021), arXiv:1910.08479 [gr-qc] .
  58. D. Gajic and C. Warnick, A model problem for quasinormal ringdown of asymptotically flat or extremal black holes, J. Math. Phys. 61, 102501 (2020), arXiv:1910.08481 [math.AP] .
  59. J. Galkowski and M. Zworski, Outgoing solutions via gevrey-2 properties, Annals of PDE 7, 1 (2021).
  60. J. B. Griffiths and J. Podolsky, Exact Space-Times in Einstein’s General Relativity, Cambridge Monographs on Mathematical Physics (Cambridge University Press, Cambridge, 2009).
  61. V. Cardoso and J. P. S. Lemos, Quasinormal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations, Phys. Rev. D 64, 084017 (2001), arXiv:gr-qc/0105103 .
  62. R. Panosso Macedo, Hyperboloidal framework for the Kerr spacetime, Class. Quant. Grav. 37, 065019 (2020), arXiv:1910.13452 [gr-qc] .
Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: