Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
52 tokens/sec
GPT-5 Medium
20 tokens/sec
GPT-5 High Premium
28 tokens/sec
GPT-4o
100 tokens/sec
DeepSeek R1 via Azure Premium
98 tokens/sec
GPT OSS 120B via Groq Premium
459 tokens/sec
Kimi K2 via Groq Premium
197 tokens/sec
2000 character limit reached

A computationally efficient compact model for ferroelectric FETs for the simulation of online training of neural networks (2004.03903v1)

Published 8 Apr 2020 in physics.app-ph

Abstract: Tri-gate ferroelectric FETs with Hf0.5Zr0.5O2 gate insulator for memory and neuromorphic applications are fabricated and characterized for multi-level operation. The conductance and threshold voltage exhibit highly linear and symmetric characteristics. A compact analytical model is developed to accurately capture FET transfer characteristics, including series resistance, coulombic scattering, and vertical field dependent mobility degradation effects, as well as the evolvement of threshold voltage and mobility with ferroelectric polarization switching. The model covers both sub-threshold and strong inversion operation. Additional measurements confirm ferroelectric switching as opposed to carrier-trapping-based memory operation. The compact model is implemented in a simulation platform for online training of deep neural networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.