Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Head Attention based Probabilistic Vehicle Trajectory Prediction (2004.03842v3)

Published 8 Apr 2020 in cs.CV, cs.LG, cs.RO, and eess.SP

Abstract: This paper presents online-capable deep learning model for probabilistic vehicle trajectory prediction. We propose a simple encoder-decoder architecture based on multi-head attention. The proposed model generates the distribution of the predicted trajectories for multiple vehicles in parallel. Our approach to model the interactions can learn to attend to a few influential vehicles in an unsupervised manner, which can improve the interpretability of the network. The experiments using naturalistic trajectories at highway show the clear improvement in terms of positional error on both longitudinal and lateral direction.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.