Duality and $H_{\infty}$-Optimal Control Of Coupled ODE-PDE Systems (2004.03638v2)
Abstract: In this paper, we present a convex formulation of $H_{\infty}$-optimal control problem for coupled linear ODE-PDE systems with one spatial dimension. First, we reformulate the coupled ODE-PDE system as a Partial Integral Equation (PIE) system and show that stability and $H_{\infty}$ performance of the PIE system implies that of the ODE-PDE system. We then construct a dual PIE system and show that asymptotic stability and $H_{\infty}$ performance of the dual system is equivalent to that of the primal PIE system. Next, we pose a convex dual formulation of the stability and $H_{\infty}$-performance problems using the Linear PI Inequality (LPI) framework. LPIs are a generalization of LMIs to Partial Integral (PI) operators and can be solved using PIETOOLS, a MATLAB toolbox. Next, we use our duality results to formulate the stabilization and $H_{\infty}$-optimal state-feedback control problems as LPIs. Finally, we illustrate the accuracy and scalability of the algorithms by constructing controllers for several numerical examples.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.