A Computational Method for $H_2$-optimal Estimator and State Feedback Controller Synthesis for PDEs
Abstract: In this paper, we present solvable, convex formulations of $H_2$-optimal state estimation and state-feedback control problems for a general class of linear Partial Differential Equations (PDEs) with one spatial dimension. These convex formulations are derived by using an analysis and control framework called the `Partial Integral Equation' (PIE) framework, which utilizes the PIE representation of infinite-dimensional systems. Since PIEs are parameterized by Partial Integral (PI) operators that form an algebra, $H_2$-optimal estimation and control problems for PIEs can be formulated as Linear PI Inequalities (LPIs). Furthermore, if a PDE admits a PIE representation, then the stability and $H_2$ performance of the PIE system implies that of the PDE system. Consequently, the optimal estimator and controller obtained for a PIE using LPIs provide the same stability and performance when applied to the corresponding PDE. These LPI optimization problems can be solved computationally using semi-definite programming solvers because such problems can be formulated using Linear Matrix Inequalities by using positive matrices to parameterize a cone of positive PI operators. We illustrate the application of these methods by constructing observers and controllers for some standard PDE examples.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.