Papers
Topics
Authors
Recent
2000 character limit reached

PatchVAE: Learning Local Latent Codes for Recognition (2004.03623v1)

Published 7 Apr 2020 in cs.CV and cs.LG

Abstract: Unsupervised representation learning holds the promise of exploiting large amounts of unlabeled data to learn general representations. A promising technique for unsupervised learning is the framework of Variational Auto-encoders (VAEs). However, unsupervised representations learned by VAEs are significantly outperformed by those learned by supervised learning for recognition. Our hypothesis is that to learn useful representations for recognition the model needs to be encouraged to learn about repeating and consistent patterns in data. Drawing inspiration from the mid-level representation discovery work, we propose PatchVAE, that reasons about images at patch level. Our key contribution is a bottleneck formulation that encourages mid-level style representations in the VAE framework. Our experiments demonstrate that representations learned by our method perform much better on the recognition tasks compared to those learned by vanilla VAEs.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.

Youtube Logo Streamline Icon: https://streamlinehq.com