Papers
Topics
Authors
Recent
2000 character limit reached

Domain-based Latent Personal Analysis and its use for impersonation detection in social media (2004.02346v3)

Published 5 Apr 2020 in cs.CL

Abstract: Zipf's law defines an inverse proportion between a word's ranking in a given corpus and its frequency in it, roughly dividing the vocabulary into frequent words and infrequent ones. Here, we stipulate that within a domain an author's signature can be derived from, in loose terms, the author's missing popular words and frequently used infrequent-words. We devise a method, termed Latent Personal Analysis (LPA), for finding domain-based attributes for entities in a domain: their distance from the domain and their signature, which determines how they most differ from a domain. We identify the most suitable distance metric for the method among several and construct the distances and personal signatures for authors, the domain's entities. The signature consists of both over-used terms (compared to the average), and missing popular terms. We validate the correctness and power of the signatures in identifying users and set existence conditions. We then show uses for the method in explainable authorship attribution: we define algorithms that utilize LPA to identify two types of impersonation in social media: (1) authors with sockpuppets (multiple) accounts; (2) front users accounts, operated by several authors. We validate the algorithms and employ them over a large scale dataset obtained from a social media site with over 4000 users. We corroborate these results using temporal rate analysis. LPA can further be used to devise personal attributes in a wide range of scientific domains in which the constituents have a long-tail distribution of elements.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.