Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s
GPT-5 High 12 tok/s Pro
GPT-4o 96 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 217 tok/s Pro
2000 character limit reached

Machine Learning for Nanohertz Gravitational Wave Detection and Parameter Estimation with Pulsar Timing Array (2003.13928v2)

Published 31 Mar 2020 in astro-ph.IM

Abstract: Studies have shown that the use of pulsar timing arrays (PTAs) is among the approaches with the highest potential to detect very low-frequency gravitational waves in the near future. Although the capture of gravitational waves (GWs) by PTAs has not been reported yet, many related theoretical studies and some meaningful detection limits have been reported. In this study, we focused on the nanohertz GWs from individual supermassive binary black holes. Given specific pulsars (PSR J1909$-$3744, PSR J1713$+$0747, PSR J0437$-$4715), the corresponding GW$-$induced timing residuals in PTAs with Gaussian white noise can be simulated. Further, we report the classification of the simulated PTA data and parameter estimation for potential GW sources using machine learning based on neural networks. As a classifier, the convolutional neural network shows high accuracy when the combined signal to noise ratio $\geq$1.33 for our simulated data. Further, we applied a recurrent neural network to estimate the chirp mass ($\mathcal{M}$) of the source and luminosity distance ($\text{D}_{p}$) of the pulsars and Bayesian neural networks (BNNs) to obtain the uncertainties of chirp mass estimation. Knowledge of the uncertainties is crucial to astrophysical observation. In our case, the mean relative error of chirp mass estimation is less than $13.6\%$. Although these results are achieved for simulated PTA data, we believe that they will be important for realizing intelligent processing in PTA data analysis.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.