Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scene Context Based Semantic Segmentation for 3D LiDAR Data in Dynamic Scene (2003.13926v1)

Published 31 Mar 2020 in cs.RO

Abstract: We propose a graph neural network(GNN) based method to incorporate scene context for the semantic segmentation of 3D LiDAR data. The problem is defined as building a graph to represent the topology of a center segment with its neighborhoods, then inferring the segment label. The node of graph is generated from the segment on range image, which is suitable for both sparse and dense point cloud. Edge weights that evaluate the correlations of center node and its neighborhoods are automatically encoded by a neural network, therefore the number of neighbor nodes is no longer a sensitive parameter. A system consists of segment generation, graph building, edge weight estimation, node updating, and node prediction is designed. Quantitative evaluation on a dataset of dynamic scene shows that our method has better performance than unary CNN with 8% improvement, as well as normal GNN with 17% improvement.

Citations (1)

Summary

We haven't generated a summary for this paper yet.