Papers
Topics
Authors
Recent
2000 character limit reached

Genetic Algorithmic Parameter Optimisation of a Recurrent Spiking Neural Network Model

Published 30 Mar 2020 in cs.NE and q-bio.NC | (2003.13850v2)

Abstract: Neural networks are complex algorithms that loosely model the behaviour of the human brain. They play a significant role in computational neuroscience and artificial intelligence. The next generation of neural network models is based on the spike timing activity of neurons: spiking neural networks (SNNs). However, model parameters in SNNs are difficult to search and optimise. Previous studies using genetic algorithm (GA) optimisation of SNNs were focused mainly on simple, feedforward, or oscillatory networks, but not much work has been done on optimising cortex-like recurrent SNNs. In this work, we investigated the use of GAs to search for optimal parameters in recurrent SNNs to reach targeted neuronal population firing rates, e.g. as in experimental observations. We considered a cortical column based SNN comprising 1000 Izhikevich spiking neurons for computational efficiency and biologically realism. The model parameters explored were the neuronal biased input currents. First, we found for this particular SNN, the optimal parameter values for targeted population averaged firing activities, and the convergence of algorithm by ~100 generations. We then showed that the GA optimal population size was within ~16-20 while the crossover rate that returned the best fitness value was ~0.95. Overall, we have successfully demonstrated the feasibility of implementing GA to optimise model parameters in a recurrent cortical based SNN.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.