Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SPENSER: Towards a NeuroEvolutionary Approach for Convolutional Spiking Neural Networks (2305.10987v1)

Published 18 May 2023 in cs.NE and cs.LG

Abstract: Spiking Neural Networks (SNNs) have attracted recent interest due to their energy efficiency and biological plausibility. However, the performance of SNNs still lags behind traditional Artificial Neural Networks (ANNs), as there is no consensus on the best learning algorithm for SNNs. Best-performing SNNs are based on ANN to SNN conversion or learning with spike-based backpropagation through surrogate gradients. The focus of recent research has been on developing and testing different learning strategies, with hand-tailored architectures and parameter tuning. Neuroevolution (NE), has proven successful as a way to automatically design ANNs and tune parameters, but its applications to SNNs are still at an early stage. DENSER is a NE framework for the automatic design and parametrization of ANNs, based on the principles of Genetic Algorithms (GA) and Structured Grammatical Evolution (SGE). In this paper, we propose SPENSER, a NE framework for SNN generation based on DENSER, for image classification on the MNIST and Fashion-MNIST datasets. SPENSER generates competitive performing networks with a test accuracy of 99.42% and 91.65% respectively.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Henrique Branquinho (1 paper)
  2. Nuno Lourenço (32 papers)
  3. Ernesto Costa (3 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.