Symmetries between measurements in quantum mechanics (2003.12553v1)
Abstract: Symmetries are a key concept to connect mathematical elegance with physical insight. We consider measurement assemblages in quantum mechanics and show how their symmetry can be described by means of the so-called discrete bundles. It turns out that many measurement assemblages used in quantum information theory as well as for studying the foundations of quantum mechanics are entirely determined by symmetry; moreover, starting from a certain symmetry group, novel types of measurement sets can be constructed. The insight gained from symmetry allows us to easily determine whether the measurements in the set are incompatible under noisy conditions, i.e., whether they can be regarded as genuinely distinct ones. In addition, symmetry enables us to identify finite sets of measurements having a high sensitivity to reveal the quantumness of distributed quantum states.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.