Papers
Topics
Authors
Recent
2000 character limit reached

On the Complexity and Approximability of Optimal Sensor Selection and Attack for Kalman Filtering

Published 24 Mar 2020 in math.OC, cs.CC, cs.SY, and eess.SY | (2003.11951v2)

Abstract: Given a linear dynamical system affected by stochastic noise, we consider the problem of selecting an optimal set of sensors (at design-time) to minimize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter, subject to certain selection budget constraints. We show the fundamental result that there is no polynomial-time constant-factor approximation algorithm for this problem. This contrasts with other classes of sensor selection problems studied in the literature, which typically pursue constant-factor approximations by leveraging greedy algorithms and submodularity (or supermodularity) of the cost function. Here, we provide a specific example showing that greedy algorithms can perform arbitrarily poorly for the problem of design-time sensor selection for Kalman filtering. We then study the problem of attacking (i.e., removing) a set of installed sensors, under predefined attack budget constraints, to maximize the trace of the steady state a priori or a posteriori error covariance of the Kalman filter. Again, we show that there is no polynomial-time constant-factor approximation algorithm for this problem, and show specifically that greedy algorithms can perform arbitrarily poorly.

Citations (26)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.