Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Approach to Optimally Solving Sensor Scheduling and Sensor Selection Problems in Kalman Filtering (2304.02692v2)

Published 5 Apr 2023 in math.OC, cs.SY, and eess.SY

Abstract: We consider a general form of the sensor scheduling problem for state estimation of linear dynamical systems, which involves selecting sensors that minimize the trace of the Kalman filter error covariance (weighted by a positive semidefinite matrix) subject to polyhedral constraints on the selected sensors. This general form captures several well-studied problems including sensor placement, sensor scheduling with budget constraints, and Linear Quadratic Gaussian (LQG) control and sensing co-design. We present a mixed integer optimization approach that is derived by exploiting the optimality of the Kalman filter. While existing work has focused on approximate methods to specific problem variants, our work provides a unified approach to computing optimal solutions to the general version of sensor scheduling. In simulation, we show this approach finds optimal solutions for systems with 30 to 50 states in seconds.

Summary

We haven't generated a summary for this paper yet.