Papers
Topics
Authors
Recent
Search
2000 character limit reached

Efficient Algorithms for Eigensystem Realization using Randomized SVD

Published 26 Mar 2020 in math.NA and cs.NA | (2003.11872v2)

Abstract: Eigensystem Realization Algorithm (ERA) is a data-driven approach for subspace system identification and is widely used in many areas of engineering. However, the computational cost of the ERA is dominated by a step that involves the singular value decomposition (SVD) of a large, dense matrix with block Hankel structure. This paper develops computationally efficient algorithms for reducing the computational cost of the SVD step by using randomized subspace iteration and exploiting the block Hankel structure of the matrix. We provide a detailed analysis of the error in the identified system matrices and the computational cost of the proposed algorithms. We demonstrate the accuracy and computational benefits of our algorithms on two test problems: the first involves a partial differential equation that models the cooling of steel rails, and the second is an application from power systems engineering.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.