Papers
Topics
Authors
Recent
Search
2000 character limit reached

Large-Scale System Identification Using a Randomized SVD

Published 6 Sep 2021 in math.OC, cs.LG, cs.NA, cs.SY, eess.SY, and math.NA | (2109.02703v1)

Abstract: Learning a dynamical system from input/output data is a fundamental task in the control design pipeline. In the partially observed setting there are two components to identification: parameter estimation to learn the Markov parameters, and system realization to obtain a state space model. In both sub-problems it is implicitly assumed that standard numerical algorithms such as the singular value decomposition (SVD) can be easily and reliably computed. When trying to fit a high-dimensional model to data, for example in the cyber-physical system setting, even computing an SVD is intractable. In this work we show that an approximate matrix factorization obtained using randomized methods can replace the standard SVD in the realization algorithm while maintaining the non-asymptotic (in data-set size) performance and robustness guarantees of classical methods. Numerical examples illustrate that for large system models, this is the only method capable of producing a model.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.