Papers
Topics
Authors
Recent
2000 character limit reached

Efficient Algorithms for Multidimensional Segmented Regression

Published 24 Mar 2020 in cs.DS, cs.LG, math.ST, stat.ML, and stat.TH | (2003.11086v1)

Abstract: We study the fundamental problem of fixed design {\em multidimensional segmented regression}: Given noisy samples from a function $f$, promised to be piecewise linear on an unknown set of $k$ rectangles, we want to recover $f$ up to a desired accuracy in mean-squared error. We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension. Our algorithm relies on a simple iterative merging approach, which is novel in the multidimensional setting. Our experimental evaluation on both synthetic and real datasets shows that our algorithm is competitive and in some cases outperforms state-of-the-art heuristics. Code of our implementation is available at \url{https://github.com/avoloshinov/multidimensional-segmented-regression}.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.