Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Solving a Mixture of Many Random Linear Equations by Tensor Decomposition and Alternating Minimization (1608.05749v1)

Published 19 Aug 2016 in cs.LG, cs.IT, math.IT, math.ST, stat.ML, and stat.TH

Abstract: We consider the problem of solving mixed random linear equations with $k$ components. This is the noiseless setting of mixed linear regression. The goal is to estimate multiple linear models from mixed samples in the case where the labels (which sample corresponds to which model) are not observed. We give a tractable algorithm for the mixed linear equation problem, and show that under some technical conditions, our algorithm is guaranteed to solve the problem exactly with sample complexity linear in the dimension, and polynomial in $k$, the number of components. Previous approaches have required either exponential dependence on $k$, or super-linear dependence on the dimension. The proposed algorithm is a combination of tensor decomposition and alternating minimization. Our analysis involves proving that the initialization provided by the tensor method allows alternating minimization, which is equivalent to EM in our setting, to converge to the global optimum at a linear rate.

Citations (56)

Summary

We haven't generated a summary for this paper yet.