Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proof of Sun's conjectures on super congruences and the divisibility of certain binomial sums (1511.05553v5)

Published 17 Nov 2015 in math.NT and math.CO

Abstract: In this paper, we prove two conjectures of Z.-W. Sun: $$2n\binom{2n}n\big|\sum_{k=0}{n-1}(3k+1)\binom{2k}k3{16}{n-1-k}\ \mbox{for}\ \mbox{all}\ n=2,3,\cdots,$$ and $$\sum_{k=0}{(p-1)/2}\frac{3k+1}{16k}\binom{2k}{k}3\equiv p+2\left(\frac{-1}{p}\right)p3E_{p-3}\pmod{p4},$$ where $p>3$ is a prime and $E_0,E_1,E_2,\cdots$ are Euler numbers.

Summary

We haven't generated a summary for this paper yet.