Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
116 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
55 tokens/sec
2000 character limit reached

Addressing the Memory Bottleneck in AI Model Training (2003.08732v1)

Published 11 Mar 2020 in cs.LG, cs.CV, and eess.IV

Abstract: Using medical imaging as case-study, we demonstrate how Intel-optimized TensorFlow on an x86-based server equipped with 2nd Generation Intel Xeon Scalable Processors with large system memory allows for the training of memory-intensive AI/deep-learning models in a scale-up server configuration. We believe our work represents the first training of a deep neural network having large memory footprint (~ 1 TB) on a single-node server. We recommend this configuration to scientists and researchers who wish to develop large, state-of-the-art AI models but are currently limited by memory.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.