Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamic Spatiotemporal Graph Neural Network with Tensor Network (2003.08729v1)

Published 12 Mar 2020 in cs.CV

Abstract: Dynamic spatial graph construction is a challenge in graph neural network (GNN) for time series data problems. Although some adaptive graphs are conceivable, only a 2D graph is embedded in the network to reflect the current spatial relation, regardless of all the previous situations. In this work, we generate a spatial tensor graph (STG) to collect all the dynamic spatial relations, as well as a temporal tensor graph (TTG) to find the latent pattern along time at each node. These two tensor graphs share the same nodes and edges, which leading us to explore their entangled correlations by Projected Entangled Pair States (PEPS) to optimize the two graphs. We experimentally compare the accuracy and time costing with the state-of-the-art GNN based methods on the public traffic datasets.

Citations (6)

Summary

We haven't generated a summary for this paper yet.