Papers
Topics
Authors
Recent
2000 character limit reached

Order theory for discrete gradient methods

Published 18 Mar 2020 in math.NA and cs.NA | (2003.08267v4)

Abstract: The discrete gradient methods are integrators designed to preserve invariants of ordinary differential equations. From a formal series expansion of a subclass of these methods, we derive conditions for arbitrarily high order. We derive specific results for the average vector field discrete gradient, from which we get P-series methods in the general case, and B-series methods for canonical Hamiltonian systems. Higher order schemes are presented, and their applications are demonstrated on the H\'enon-Heiles system and a Lotka-Volterra system, and on both the training and integration of a pendulum system learned from data by a neural network.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.