Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Hamiltonian Systems with Mono-Implicit Runge-Kutta Methods (2303.03769v1)

Published 7 Mar 2023 in math.NA, cs.LG, and cs.NA

Abstract: Numerical integrators could be used to form interpolation conditions when training neural networks to approximate the vector field of an ordinary differential equation (ODE) from data. When numerical one-step schemes such as the Runge-Kutta methods are used to approximate the temporal discretization of an ODE with a known vector field, properties such as symmetry and stability are much studied. Here, we show that using mono-implicit Runge-Kutta methods of high order allows for accurate training of Hamiltonian neural networks on small datasets. This is demonstrated by numerical experiments where the Hamiltonian of the chaotic double pendulum in addition to the Fermi-Pasta-Ulam-Tsingou system is learned from data.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com