Papers
Topics
Authors
Recent
2000 character limit reached

Privacy Preserving Point-of-interest Recommendation Using Decentralized Matrix Factorization

Published 12 Mar 2020 in cs.LG, cs.AI, and stat.ML | (2003.05610v1)

Abstract: Points of interest (POI) recommendation has been drawn much attention recently due to the increasing popularity of location-based networks, e.g., Foursquare and Yelp. Among the existing approaches to POI recommendation, Matrix Factorization (MF) based techniques have proven to be effective. However, existing MF approaches suffer from two major problems: (1) Expensive computations and storages due to the centralized model training mechanism: the centralized learners have to maintain the whole user-item rating matrix, and potentially huge low rank matrices. (2) Privacy issues: the users' preferences are at risk of leaking to malicious attackers via the centralized learner. To solve these, we present a Decentralized MF (DMF) framework for POI recommendation. Specifically, instead of maintaining all the low rank matrices and sensitive rating data for training, we propose a random walk based decentralized training technique to train MF models on each user's end, e.g., cell phone and Pad. By doing so, the ratings of each user are still kept on one's own hand, and moreover, decentralized learning can be taken as distributed learning with multi-learners (users), and thus alleviates the computation and storage issue. Experimental results on two real-world datasets demonstrate that, comparing with the classic and state-of-the-art latent factor models, DMF significantly improvements the recommendation performance in terms of precision and recall.

Citations (70)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.