Papers
Topics
Authors
Recent
2000 character limit reached

SIMBA: A Skyrmionic In-Memory Binary Neural Network Accelerator (2003.05132v1)

Published 11 Mar 2020 in cs.ET and cond-mat.dis-nn

Abstract: Magnetic skyrmions are emerging as potential candidates for next generation non-volatile memories. In this paper, we propose an in-memory binary neural network (BNN) accelerator based on the non-volatile skyrmionic memory, which we call as SIMBA. SIMBA consumes 26.7 mJ of energy and 2.7 ms of latency when running an inference on a VGG-like BNN. Furthermore, we demonstrate improvements in the performance of SIMBA by optimizing material parameters such as saturation magnetization, anisotropic energy and damping ratio. Finally, we show that the inference accuracy of BNNs is robust against the possible stochastic behavior of SIMBA (88.5% +/- 1%).

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.