PIMBALL: Binary Neural Networks in Spintronic Memory (1812.03989v2)
Abstract: Neural networks span a wide range of applications of industrial and commercial significance. Binary neural networks (BNN) are particularly effective in trading accuracy for performance, energy efficiency or hardware/software complexity. Here, we introduce a spintronic, re-configurable in-memory BNN accelerator, PIMBALL: Processing In Memory BNN AcceL(L)erator, which allows for massively parallel and energy efficient computation. PIMBALL is capable of being used as a standard spintronic memory (STT-MRAM) array and a computational substrate simultaneously. We evaluate PIMBALL using multiple image classifiers and a genomics kernel. Our simulation results show that PIMBALL is more energy efficient than alternative CPU, GPU, and FPGA based implementations while delivering higher throughput.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.