Papers
Topics
Authors
Recent
2000 character limit reached

Beyond sets with atoms: definability in first order logic

Published 10 Mar 2020 in cs.LO | (2003.04803v4)

Abstract: Sets with atoms serve as an alternative to ZFC foundations for mathematics, where some infinite, though highly symmetric sets, behave in a finitistic way. Therefore, one can try to carry over analysis of the classical algorithms from finite structures to some infinite structures. Recent results show that this is indeed possible and leads to many practical applications. In this paper we shall take another route to finite analysis of infinite sets, which extends and sheds more light on sets with atoms. As an application of our theory we give a characterisation of languages recognized by automata definable in fragments of first-order logic.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.