Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 178 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 56 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Cross-modal Learning for Multi-modal Video Categorization (2003.03501v3)

Published 7 Mar 2020 in cs.CV and cs.LG

Abstract: Multi-modal ML models can process data in multiple modalities (e.g., video, audio, text) and are useful for video content analysis in a variety of problems (e.g., object detection, scene understanding, activity recognition). In this paper, we focus on the problem of video categorization using a multi-modal ML technique. In particular, we have developed a novel multi-modal ML approach that we call "cross-modal learning", where one modality influences another but only when there is correlation between the modalities -- for that, we first train a correlation tower that guides the main multi-modal video categorization tower in the model. We show how this cross-modal principle can be applied to different types of models (e.g., RNN, Transformer, NetVLAD), and demonstrate through experiments how our proposed multi-modal video categorization models with cross-modal learning out-perform strong state-of-the-art baseline models.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.