Papers
Topics
Authors
Recent
2000 character limit reached

Exploiting Temporal Coherence for Multi-modal Video Categorization

Published 7 Feb 2020 in cs.CV, cs.LG, and stat.ML | (2002.03844v2)

Abstract: Multimodal ML models can process data in multiple modalities (e.g., video, images, audio, text) and are useful for video content analysis in a variety of problems (e.g., object detection, scene understanding). In this paper, we focus on the problem of video categorization by using a multimodal approach. We have developed a novel temporal coherence-based regularization approach, which applies to different types of models (e.g., RNN, NetVLAD, Transformer). We demonstrate through experiments how our proposed multimodal video categorization models with temporal coherence out-perform strong state-of-the-art baseline models.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.