Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Online Distributed Optimal Control of Very-Large-Scale Robotic Systems

Published 4 Mar 2020 in cs.MA and math.OC | (2003.01891v2)

Abstract: This paper presents an adaptive online distributed optimal control approach that is applicable to optimal planning for very-large-scale robotics systems in highly uncertain environments. This approach is developed based on the optimal mass transport theory. It is also viewed as an online reinforcement learning and approximate dynamic programming approach in the Wasserstein-GMM space, where a novel value functional is defined based on the probability density functions of robots and the time-varying obstacle map functions describing the changing environmental information. The proposed approach is demonstrated on the path planning problem of very-largescale robotic systems where the approximated layout of obstacles in the workspace is incrementally updated by the observations of robots, and compared with some existing state-of-the-art approaches. The numerical simulation results show that the proposed approach outperforms these approaches in aspects of the average traveling distance and the energy cost.

Citations (12)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.