Papers
Topics
Authors
Recent
Search
2000 character limit reached

HyperEmbed: Tradeoffs Between Resources and Performance in NLP Tasks with Hyperdimensional Computing enabled Embedding of n-gram Statistics

Published 3 Mar 2020 in cs.CL | (2003.01821v2)

Abstract: Recent advances in Deep Learning have led to a significant performance increase on several NLP tasks, however, the models become more and more computationally demanding. Therefore, this paper tackles the domain of computationally efficient algorithms for NLP tasks. In particular, it investigates distributed representations of n-gram statistics of texts. The representations are formed using hyperdimensional computing enabled embedding. These representations then serve as features, which are used as input to standard classifiers. We investigate the applicability of the embedding on one large and three small standard datasets for classification tasks using nine classifiers. The embedding achieved on par F1 scores while decreasing the time and memory requirements by several times compared to the conventional n-gram statistics, e.g., for one of the classifiers on a small dataset, the memory reduction was 6.18 times; while train and test speed-ups were 4.62 and 3.84 times, respectively. For many classifiers on the large dataset, memory reduction was ca. 100 times and train and test speed-ups were over 100 times. Importantly, the usage of distributed representations formed via hyperdimensional computing allows dissecting strict dependency between the dimensionality of the representation and n-gram size, thus, opening a room for tradeoffs.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.