Papers
Topics
Authors
Recent
2000 character limit reached

Stable Spatially Localized Configurations in a Simple Structure -- A Global Symmetry-Breaking Approach (2002.12454v2)

Published 16 Feb 2020 in nlin.PS and cond-mat.soft

Abstract: We revisit the classic stability problem of the buckling of an inextensible, axially compressed beam on a nonlinear elastic foundation with a semi-analytical approach to understand how spatially localized deformation solutions emerge in many applications in mechanics. Instead of a numerical search for such solutions using arbitrary imperfections, we propose a systematic search using branch-following and bifurcation techniques along with group-theoretic methods to find all the bifurcated solution orbits (primary, secondary, etc.) of the system and to examine their stability and hence their observability. Unlike previously proposed methods that use multi-scale perturbation techniques near the critical load, we show that to obtain a spatially localized deformation equilibrium path for the perfect structure, one has to consider the secondary bifurcating path with the longest wavelength and follow it far away from the critical load. The novel use of group-theoretic methods here illustrates a general methodology for the systematic analysis of structures with a high degree of symmetry.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.