Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 34 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 130 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Random-Order Models (2002.12159v1)

Published 25 Feb 2020 in cs.DS and cs.GT

Abstract: This chapter introduces the \emph{random-order model} in online algorithms. In this model, the input is chosen by an adversary, then randomly permuted before being presented to the algorithm. This reshuffling often weakens the power of the adversary and allows for improved algorithmic guarantees. We show such improvements for two broad classes of problems: packing problems where we must pick a constrained set of items to maximize total value, and covering problems where we must satisfy given requirements at minimum total cost. We also discuss how random-order model relates to other stochastic models used for non-worst-case competitive analysis.

Citations (34)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.