Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Near Optimal Online Algorithms and Fast Approximation Algorithms for Resource Allocation Problems (1903.03944v1)

Published 10 Mar 2019 in cs.DS

Abstract: We present prior robust algorithms for a large class of resource allocation problems where requests arrive one-by-one (online), drawn independently from an unknown distribution at every step. We design a single algorithm that, for every possible underlying distribution, obtains a $1-\epsilon$ fraction of the profit obtained by an algorithm that knows the entire request sequence ahead of time. The factor $\epsilon$ approaches $0$ when no single request consumes/contributes a significant fraction of the global consumption/contribution by all requests together. We show that the tradeoff we obtain here that determines how fast $\epsilon$ approaches $0$, is near optimal: we give a nearly matching lower bound showing that the tradeoff cannot be improved much beyond what we obtain. Going beyond the model of a static underlying distribution, we introduce the adversarial stochastic input model, where an adversary, possibly in an adaptive manner, controls the distributions from which the requests are drawn at each step. Placing no restriction on the adversary, we design an algorithm that obtains a $1-\epsilon$ fraction of the optimal profit obtainable w.r.t. the worst distribution in the adversarial sequence. In the offline setting we give a fast algorithm to solve very large LPs with both packing and covering constraints. We give algorithms to approximately solve (within a factor of $1+\epsilon$) the mixed packing-covering problem with $O(\frac{\gamma m \log (n/\delta)}{\epsilon2})$ oracle calls where the constraint matrix of this LP has dimension $n\times m$, the success probability of the algorithm is $1-\delta$, and $\gamma$ quantifies how significant a single request is when compared to the sum total of all requests. We discuss implications of our results to several special cases including online combinatorial auctions, network routing and the adwords problem.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nikhil R. Devanur (30 papers)
  2. Kamal Jain (10 papers)
  3. Balasubramanian Sivan (42 papers)
  4. Christopher A. Wilkens (11 papers)
Citations (37)

Summary

We haven't generated a summary for this paper yet.