Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
114 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
35 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
3 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
2000 character limit reached

DP-MERF: Differentially Private Mean Embeddings with Random Features for Practical Privacy-Preserving Data Generation (2002.11603v5)

Published 26 Feb 2020 in cs.LG and stat.ML

Abstract: We propose a differentially private data generation paradigm using random feature representations of kernel mean embeddings when comparing the distribution of true data with that of synthetic data. We exploit the random feature representations for two important benefits. First, we require a minimal privacy cost for training deep generative models. This is because unlike kernel-based distance metrics that require computing the kernel matrix on all pairs of true and synthetic data points, we can detach the data-dependent term from the term solely dependent on synthetic data. Hence, we need to perturb the data-dependent term only once and then use it repeatedly during the generator training. Second, we can obtain an analytic sensitivity of the kernel mean embedding as the random features are norm bounded by construction. This removes the necessity of hyper-parameter search for a clipping norm to handle the unknown sensitivity of a generator network. We provide several variants of our algorithm, differentially-private mean embeddings with random features (DP-MERF) to jointly generate labels and input features for datasets such as heterogeneous tabular data and image data. Our algorithm achieves drastically better privacy-utility trade-offs than existing methods when tested on several datasets.

Citations (87)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.