Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pre-trained Perceptual Features Improve Differentially Private Image Generation (2205.12900v4)

Published 25 May 2022 in stat.ML, cs.CR, and cs.LG

Abstract: Training even moderately-sized generative models with differentially-private stochastic gradient descent (DP-SGD) is difficult: the required level of noise for reasonable levels of privacy is simply too large. We advocate instead building off a good, relevant representation on an informative public dataset, then learning to model the private data with that representation. In particular, we minimize the maximum mean discrepancy (MMD) between private target data and a generator's distribution, using a kernel based on perceptual features learned from a public dataset. With the MMD, we can simply privatize the data-dependent term once and for all, rather than introducing noise at each step of optimization as in DP-SGD. Our algorithm allows us to generate CIFAR10-level images with $\epsilon \approx 2$ which capture distinctive features in the distribution, far surpassing the current state of the art, which mostly focuses on datasets such as MNIST and FashionMNIST at a large $\epsilon \approx 10$. Our work introduces simple yet powerful foundations for reducing the gap between private and non-private deep generative models. Our code is available at \url{https://github.com/ParkLabML/DP-MEPF}.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Fredrik Harder (1 paper)
  2. Milad Jalali Asadabadi (2 papers)
  3. Danica J. Sutherland (49 papers)
  4. Mijung Park (28 papers)
Citations (20)
Github Logo Streamline Icon: https://streamlinehq.com