Papers
Topics
Authors
Recent
2000 character limit reached

On the use of spectral discretizations with time strong stability preserving properties to Dirichlet pseudo-parabolic problems

Published 25 Feb 2020 in math.NA and cs.NA | (2002.10811v1)

Abstract: This paper is concerned with the approximation of linear and nonlinearinitial-boundary-value problems of pseudo-parabolic equations with Dirichlet boundary conditions. They are discretized in space by spectral Galerkin and collocation methods based on Legendre and Chebyshev polynomials. The time integration is carried out suitably with robust schemes attending to qualitative features such as stiffness and preservation of strong stability to simulate nonregular problems more correctly. The corresponding semidiscrete and fully discrete schemes are described and the performance of the methods is analyzed computationally.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.