Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral Jacobi approximations for Boussinesq systems (2312.05559v1)

Published 9 Dec 2023 in math.NA and cs.NA

Abstract: This paper is concerned with the numerical approximation of initial-boundary-value problems of a three-parameter family of Bona-Smith systems, derived as a model for the propagation of surface waves under a physical Boussinesq regime. The work proposed here is focused on the corresponding problem with Dirichlet boundary conditions and its approximation in space with spectral methods based on Jacobi polynomials, which are defined from the orthogonality with respect to some weighted $L{2}$ inner product. Well-posedness of the problem on the corresponding weighted Sobolev spaces is first analyzed and existence and uniqueness of solution, locally in time, are proved. Then the spectral Galerkin semidiscrete scheme and some detailed comments on its implementation are introduced. The existence of numerical solution and error estimates on those weighted Sobolev spaces are established. Finally, the choice of the time integrator to complete the full discretization takes care of different stability issues that may be relevant when approximating the semidiscrete system. Some numerical experiments illustrate the results.

Summary

We haven't generated a summary for this paper yet.