Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 31 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

A practical and efficient approach for Bayesian quantum state estimation (2002.10354v1)

Published 24 Feb 2020 in quant-ph

Abstract: Bayesian inference is a powerful paradigm for quantum state tomography, treating uncertainty in meaningful and informative ways. Yet the numerical challenges associated with sampling from complex probability distributions hampers Bayesian tomography in practical settings. In this Article, we introduce an improved, self-contained approach for Bayesian quantum state estimation. Leveraging advances in machine learning and statistics, our formulation relies on highly efficient preconditioned Crank--Nicolson sampling and a pseudo-likelihood. We theoretically analyze the computational cost, and provide explicit examples of inference for both actual and simulated datasets, illustrating improved performance with respect to existing approaches.

Citations (93)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.