Papers
Topics
Authors
Recent
2000 character limit reached

AutoLR: Layer-wise Pruning and Auto-tuning of Learning Rates in Fine-tuning of Deep Networks

Published 14 Feb 2020 in cs.CV | (2002.06048v3)

Abstract: Existing fine-tuning methods use a single learning rate over all layers. In this paper, first, we discuss that trends of layer-wise weight variations by fine-tuning using a single learning rate do not match the well-known notion that lower-level layers extract general features and higher-level layers extract specific features. Based on our discussion, we propose an algorithm that improves fine-tuning performance and reduces network complexity through layer-wise pruning and auto-tuning of layer-wise learning rates. The proposed algorithm has verified the effectiveness by achieving state-of-the-art performance on the image retrieval benchmark datasets (CUB-200, Cars-196, Stanford online product, and Inshop). Code is available at https://github.com/youngminPIL/AutoLR.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.