Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 94 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 100 tok/s
GPT OSS 120B 461 tok/s Pro
Kimi K2 208 tok/s Pro
2000 character limit reached

Low-Rank Interconnected Adaptation across Layers (2407.09946v3)

Published 13 Jul 2024 in cs.CV

Abstract: Low-rank adaptation (LoRA) is a widely used parameter-efficient fine-tuning (PEFT) method that learns weight updates $\Delta W = AB$ for pretrained weights $W$ through low-rank adapters $A$ and $B$. While LoRA ensures hardware efficiency, its low-rank weight updates limit adaptation performance. In this paper, we propose low-rank interconnected adaptation across layers (Lily), a novel PEFT method that introduces an interconnected framework with locally shared $A$ and globally shared $B$ experts. This structure eliminates redundant per-layer $AB$ pairs, enabling higher-rank $\Delta W$ with equal or fewer parameters. To enhance expressiveness, we use data-dependent routers to determine $A$-$B$ interconnections, preventing $B$ experts from converging to the same behavior and improving representational power across domains. Experiments across modalities, architectures, and model sizes demonstrate Lily's superior performance and efficiency. GitHub: https://github.com/yibozhong/lily

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com