Papers
Topics
Authors
Recent
2000 character limit reached

Eigenvector Component Calculation Speedup over NumPy for High-Performance Computing (2002.04989v4)

Published 12 Feb 2020 in cs.PF, cs.DC, and cs.DS

Abstract: Applications related to artificial intelligence, machine learning, and system identification simulations essentially use eigenvectors. Calculating eigenvectors for very large matrices using conventional methods is compute-intensive and renders the applications slow. Recently, Eigenvector-Eigenvalue Identity formula promising significant speedup was identified. We study the algorithmic implementation of the formula against the existing state-of-the-art algorithms and their implementations to evaluate the performance gains. We provide a first of its kind systematic study of the implementation of the formula. We demonstrate further improvements using high-performance computing concepts over native NumPy eigenvector implementation which uses LAPACK and BLAS.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.