Papers
Topics
Authors
Recent
2000 character limit reached

A Consistently Oriented Basis for Eigenanalysis (1912.12983v1)

Published 30 Dec 2019 in math.NA, cs.NA, and q-fin.CP

Abstract: Repeated application of machine-learning, eigen-centric methods to an evolving dataset reveals that eigenvectors calculated by well-established computer implementations are not stable along an evolving sequence. This is because the sign of any one eigenvector may point along either the positive or negative direction of its associated eigenaxis, and for any one eigen call the sign does not matter when calculating a solution. This work reports an algorithm that creates a consistently oriented basis of eigenvectors. The algorithm postprocesses any well-established eigen call and is therefore agnostic to the particular implementation of the latter. Once consistently oriented, directional statistics can be applied to the eigenvectors in order to track their motion and summarize their dispersion. When a consistently oriented eigensystem is applied to methods of machine-learning, the time series of training weights becomes interpretable in the context of the machine-learning model. Ordinary linear regression is used to demonstrate such interpretability. A reference implementation of the algorithm reported herein has been written in Python and is freely available, both as source code and through the thucyd Python package.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.