Papers
Topics
Authors
Recent
Search
2000 character limit reached

Think Global, Act Local: Relating DNN generalisation and node-level SNR

Published 11 Feb 2020 in cs.LG, eess.SP, and stat.ML | (2002.04687v1)

Abstract: The reasons behind good DNN generalisation remain an open question. In this paper we explore the problem by looking at the Signal-to-Noise Ratio of nodes in the network. Starting from information theory principles, it is possible to derive an expression for the SNR of a DNN node output. Using this expression we construct figures-of-merit that quantify how well the weights of a node optimise SNR (or, equivalently, information rate). Applying these figures-of-merit, we give examples indicating that weight sets that promote good SNR performance also exhibit good generalisation. In addition, we are able to identify the qualities of weight sets that exhibit good SNR behaviour and hence promote good generalisation. This leads to a discussion of how these results relate to network training and regularisation. Finally, we identify some ways that these observations can be used in training design.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.