Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 69 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

Approximated Orthonormal Normalisation in Training Neural Networks (1911.09445v2)

Published 21 Nov 2019 in cs.LG and stat.ML

Abstract: Generalisation of a deep neural network (DNN) is one major concern when employing the deep learning approach for solving practical problems. In this paper we propose a new technique, named approximated orthonormal normalisation (AON), to improve the generalisation capacity of a DNN model. Considering a weight matrix W from a particular neural layer in the model, our objective is to design a function h(W) such that its row vectors are approximately orthogonal to each other while allowing the DNN model to fit the training data sufficiently accurate. By doing so, it would avoid co-adaptation among neurons of the same layer to be able to improve network-generalisation capacity. Specifically, at each iteration, we first approximate (WWT)-1/2 using its Taylor expansion before multiplying the matrix W. After that, the matrix product is then normalised by applying the spectral normalisation (SN) technique to obtain h(W). Conceptually speaking, AON is designed to turn orthonormal regularisation into orthonormal normalisation to avoid manual balancing the original and penalty functions. Experimental results show that AON yields promising validation performance compared to orthonormal regularisation.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.