Papers
Topics
Authors
Recent
Search
2000 character limit reached

Extended Stochastic Gradient MCMC for Large-Scale Bayesian Variable Selection

Published 7 Feb 2020 in stat.CO, cs.LG, and stat.ML | (2002.02919v1)

Abstract: Stochastic gradient Markov chain Monte Carlo (MCMC) algorithms have received much attention in Bayesian computing for big data problems, but they are only applicable to a small class of problems for which the parameter space has a fixed dimension and the log-posterior density is differentiable with respect to the parameters. This paper proposes an extended stochastic gradient MCMC lgoriathm which, by introducing appropriate latent variables, can be applied to more general large-scale Bayesian computing problems, such as those involving dimension jumping and missing data. Numerical studies show that the proposed algorithm is highly scalable and much more efficient than traditional MCMC algorithms. The proposed algorithms have much alleviated the pain of Bayesian methods in big data computing.

Citations (13)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (4)

Collections

Sign up for free to add this paper to one or more collections.